Robust Textual Data Streams Mining Based on Continuous Transfer Learning
نویسندگان
چکیده
In textual data stream environment, concept drift can occur at any time, existing approaches partitioning streams into chunks can have problem if the chunk boundary does not coincide with the change point which is impossible to predict. Since concept drift can occur at any point of the streams, it will certainly occur within chunks, which is called random concept drift. The paper proposed an approach, which is called chunk level-based concept drift method (CLCD), that can overcome this chunking problem by continuously monitoring chunk characteristics to revise the classifier based on transfer learning in positive and unlabeled (PU) textual data stream environment. Our proposed approach works in three steps. In the first step, we propose core vocabulary-based criteria to justify and identify random concept drift. In the second step, we put forward the extension of LELC (PU learning by extracting likely positive and negative microclusters)[1], called soft-LELC, to extract representative examples from unlabeled data, and assign a confidence score to each extracted example. The assigned confidence score represents the degree of belongingness of an example towards its corresponding class. In the third step, we set up a transfer learning-based SVM to build an accurate classifier for the chunks where concept drift is identified in the first step. Extensive experiments have shown that CLCD can capture random concept drift, and outperforms state-of-the-art methods in positive and unlabeled textual data stream environments.
منابع مشابه
ارائه مدلی برای استخراج اطلاعات از مستندات متنی، مبتنی بر متنکاوی در حوزه یادگیری الکترونیکی
As computer networks become the backbones of science and economy, enormous quantities documents become available. So, for extracting useful information from textual data, text mining techniques have been used. Text Mining has become an important research area that discoveries unknown information, facts or new hypotheses by automatically extracting information from different written documents. T...
متن کاملA Dynamic Ensemble Framework for Mining Textual Streams with Class Imbalance
Textual stream classification has become a realistic and challenging issue since large-scale, high-dimensional, and non-stationary streams with class imbalance have been widely used in various real-life applications. According to the characters of textual streams, it is technically difficult to deal with the classification of textual stream, especially in imbalanced environment. In this paper, ...
متن کاملCRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran
Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomal...
متن کاملTransfer Latent Semantic Learning: Microblog Mining with Less Supervision
The increasing volume of information generated on microblogging sites such as Twitter raises several challenges to traditional text mining techniques. First, most texts from those sites are abbreviated due to the constraints of limited characters in one post; second, the input usually comes in streams of large-volumes. Therefore, it is of significant importance to develop effective and efficien...
متن کاملSAMOA: a platform for mining big data streams
Social media and user generated content are causing an ever growing data deluge. The rate at which we produce data is growing steadily, thus creating larger and larger streams of continuously evolving data. Online news, micro-blogs, search queries are just a few examples of these continuous streams of user activities. The value of these streams relies in their freshness and relatedness to ongoi...
متن کامل